Starting at the origin, you move 3 units to the right, 5 units down, and 6 units backward. - What are the co-ordinates of your ending point? [a] - OCTANT - In which quadrant is your ending point? - How far is your ending point from the xz plane? [c] Let $\vec{p} = <2, -6>$. [b] SCORE: ____/ 4 PTS Let \vec{q} be the vector with magnitude 12 and direction angle $\frac{7\pi}{6}$. Write \vec{q} as a linear combination of \vec{i} and \vec{j} . [a] Write the component form of $\frac{1}{3}\vec{q} - 2\vec{p}$. [b] Find the component form of the vector \vec{g} in the same direction as <-2, 6>, such that $||\vec{g}||=8$, SCORE: ____/ 4 PTS 1K-2,6>1 <-2,6> = \(\frac{1}{10} \langle -2,6 \rangle = \langle -\(\frac{1}{10} \, \frac{3}{10} \rangle \) 图8个点温》=〈黄温 Write < 5, 12 > as the sum of two vectors, one parallel to $\vec{d} = < 2, -3 >$ and one perpendicular to \vec{d} . SCORE: _____/4 PTS < 5, 12 > < 2, -3 > < 2, -3 > < 2, -3 > = < -2, -3 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > = < -4, 6 > (-2,33). (50,3)=-120 OBTUSE If a triangle has vertices P(2, -5), Q(-1, -4) and R(-5, -6), find the interior angle Q using the methods SCORE: _____/5 PTS of sections 6.3, 6.4 and/or 11.1. Find the work done if the force represented by vector <-9, 7> moves an object from (10,-1) to (4,-6). SCORE: _____/2 PTS Justify your answer briefly. If $\vec{m}=<4,\,2>,\,\parallel\vec{n}\parallel=5$ and the angle between \vec{m} and \vec{n} is $\frac{5\pi}{6}$, find $\vec{m}\cdot\vec{n}$. SCORE: ____/3 PTS $$\|\vec{m}\| \|\vec{n}\| \cos \theta_{0} \sqrt{20} \cdot 5 \cdot \frac{3}{2}$$ $$= 2\sqrt{5} \cdot 5 \cdot -\frac{3}{2}$$ $$= -5\sqrt{5} \cdot \sqrt{20}$$